环境工程
任沂斌,男,副研究员,硕导,2019年博士毕业于中国海洋大学,研究方向为人工智能海洋学、极地海冰遥感与预测,在北极海冰的智能化遥感监测和轻量化预测方面积累了丰富的研究经验。建立了面向天气-次季节-季节尺度的北极海冰密集度AI预测模型,实现多尺度北极海冰高精度、轻量化预测,9月海冰预测结果排名国际前列;建立了像素级的北极海冰智能化识别分类模型,应用于高分辨率北极海冰数据产品构建,相关成果成功地应用于国产卫星建设中。以第一/通讯作者在 Remote Sensing of Environment、IEEE Transactions on Geoscience and Remote Sensing、Geoscientific Model Development等地学领域权威期刊发表论文 10 余篇,总引用1100余次,主持国家自然科学青年基金等各项科研项目5项,授权专利5项,参与出版专著 1 部,获得2020年“山东省优秀博士学位论文”奖。
一、研究领域  
人工智能海洋学、海冰遥感与预测
二、招生专业及方向
物理海洋学,海洋遥感与数值模拟、预测方法方向;气象学,海洋气象方向;环境工程,海洋环境工程方向
三、研究室及联系方式       
海洋环流与波动重点实验室,联系方式:yibinren@qdio.ac.cn、17863966782   
四、承担的主要科研项目
1. 国家自然科学基金,青年科学基金项目,“北极冬春季下行长波辐射对夏季海冰日密集度可预报性的影响研究”(项目编号:42206202),2023.01-2025.12,主持
2. 崂山实验室科技创新项目,子课题,“基于人工智能的天气以上尺度北极海冰预测模型研发”(课题编号:LSKJ202202302),2022.10-2025.09,主持
3. 中国博士后科学基金会,面上项目,“抗环境干扰的SAR图像船只几何参数反演模型”(课题编号:2019M662452),2019.09-2021.08,主持
4. 青岛市博士后研究项目,“基于深度学习的海洋大数据信息挖掘”,2020.05-2023.04,5万元,主持
五、研究成果及奖励         
2020年山东省优秀博士学位论文奖
六、代表性论文及著作
[1] Ren, Y., Li, X., and Wang, Y.: SICNetseason V1.0: a transformer-based deep learning model for seasonal Arctic sea ice prediction by incorporating sea ice thickness data, Geosci. Model Dev., 18, 2665–2678, https://doi.org/10.5194/gmd-18-2665-2025, 2025.(SCI, Q1, IF=4.9)
[2] Huang, Y., Ren, Y.*, & Li, X. Deep learning techniques for enhanced sea-ice types classification in the Beaufort Sea via SAR imagery. Remote Sensing of Environment. 2024, 308, 114204. (SCI, Q1, Top, IF=11.4)
[3] Ren, Y., and Li, X.*. Predicting the daily sea ice concentration on a sub-seasonal scale of the Pan-Arctic during the melting Season by a deep learning model [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023. (SCI, Q1, Top, IF=8.8)
[4] Ren, Y., Li, X.*, Zhang, W. A data-driven deep learning model for weekly sea ice concentration prediction of the Pan-Arctic during the melting season [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022. (SCI, Q1, Top, IF=8.8)
[5] Ren, Y., Li, X.*, Xu, H. A deep learning model to extract ship size from Sentinel-1 SAR images [J], IEEE Transactions on Geoscience and Remote Sensing, 2021. (SCI, Q1, Top, IF=8.8)
[6] Ren, Y., Li, X.*, Yang, X., et al., Development of a dual-attention U-Net model for sea ice and open water classification on SAR images, IEEE Geoscience and Remote Sensing Letters, 2021, doi: 10.1109/LGRS.2021.3058049. (SCI, Q1, IF=4.4)
[7] Ren, Y., Chen H, Han Y., et al., A hybrid integrated deep learning model for citywide spatio-temporal flow volume prediction, International Journal of Geographical Information Science, 2020, 34(4): 802-823. (SCI, Q1, IF=5.1)
[8] Ren, Y., Cheng, T*, and Zhang, Y. Deep spatio-temporal residual neural networks for road-network-based data modeling[J]. International Journal of Geographical Information Science, 2019, 33(9): 1894-1912. (SCI, Q1, IF=5.1)
[9] Ren, Y., Chen Z, Chen G, et al. A hybrid process/thread parallel algorithm for generating DEM from LiDAR points[J]. ISPRS International Journal of Geo-Information, 2017, 6(10): 300. (SCI, Q2, IF=2.8)
[10] Han, Y., Wang, C., Ren, Y.*, et al. Short-term prediction of bus passenger flow based on a hybrid optimized LSTM network[J]. ISPRS International Journal of Geo-Information, 2019, 8(9): 366. (SCI, Q2, IF=2.8)
[11] Li, X., Liu, B., Zheng, G., Ren, Y., Zhang, S., Liu, Y., ... & Wang, F*.  Deep-learning-based information mining from ocean remote-sensing imagery. National Science Review, 2020, 7(10), 1584-1605. (SCI, Q1, Top, IF=17.1)