胡均亚,女,副研究员,硕士生导师。2016年于中国科学院大气物理研究所获得博士学位,2016年至今在中国科学院海洋研究所工作。长期从事热带海气相互作用过程及其预测研究,重点关注ENSO数值模式发展、模拟预测和可预报性研究。已在Journal of Geophysical Research、Climate Dynamics等海洋气候权威期刊发表论文10余篇,主持国家自然科学基金青年和面上项目,参与国家自然科学基金重点项目、国家重点研发计划和中国科学院先导专项等项目。一、研究领域
热带海气动力学,数值模拟与预测
二、招生专业及方向
物理海洋学,海洋环流与气候环境效应
环境工程,海洋环境工程
三、研究室及联系方式
海洋环流与波动重点实验室
邮箱:hujunya@qdio.ac.cn
电话:18553248656
四、承担的主要科研项目
1.国家自然科学基金面上项目,目标观测敏感性研究及其对ENSO预测的影响,2023-2026,主持
2.国家自然科学基金青年项目,用复杂气候模式研究ENSO预测的春季预报障碍及其目标观测敏感区,2018-2020,主持
3.国家自然科学基金重点项目,热带太平洋海洋生物引发的热与气候系统相互作用及对ENSO的影响,2021-2025,参与
4.中国科学院战略性先导科技专项子课题,近百年-千年极端气候与太平洋-印度洋气候模态的联系,2020-2024,参与
5.国家自然科学基金重大项目课题,ENSO多变性及其与太平洋年代际变率等的关系,2017-2021,参与
6.国家重点研发计划项目课题,中小尺度海气相互作用对延伸期预测的影响,2017-2021,参与
五、研究成果及奖励
首次使用复杂模式CESM开展ENSO的可预报性研究,揭示了影响ENSO预报准确性的海温初始误差三维结构及其快速增长机制;自主发展了一个由热带太平洋区域海洋和全球大气环流模式组成的混合型耦合模式用于ENSO模拟和预测;提出表征年代际等低频变率的新方法,显著提高了中等复杂程度海气耦合模式对ENSO多样性的模拟性能。
六、代表性论文及著作
1. Dong X., R.-H. Zhang, J. Hu, C. Gao, M. Chen, 2025: Thermodynamic processes prolong triple La Niña events in a hybrid coupled ocean-atmosphere model. Climate Dynamics, 63(1): 1-16.
2. Hu, J.*, H. Wang, C. Gao, R.-H. Zhang, 2024: Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model. Advances in Atmospheric Sciences, 41(5): 864-880.
3. Wu, M., R.-H. Zhang*, H. Zhi, J. Hu, 2024: Synergistic interdecadal effects of the North Pacific and North Atlantic SST on precipitation over eastern China as revealed in the ECHAM5 simulations. Climate Dynamics, 62(9), 8417-8439.
4. Wu, M., R.-H. Zhang*, J. Hu, H. Zhi, 2024: Synergistic Interdecadal Evolution of Precipitation over Eastern China and the Pacific Decadal Oscillation during 1951–2015. Advances in Atmospheric Sciences, 41: 53-72.
5. Hu, J., H. Wang, C. Gao, L. Zhou, R.-H. Zhang*, 2023: Interdecadal wind stress variability over the tropical Pacific causes ENSO diversity in an intermediate coupled model. Climate Dynamics, 60: 1831–1847.
6. Qin, X., J. Yao, J. Hu*, C. Li, 2023: Characteristics of the tropical cyclones before making landfall in China. International Journal of Climatology, 43: 3963–3976.
7. Pang, Y., Y. Jin*, Y. Zhao*, X. Chen, X. Li, T. Liu, J. Hu, 2023: Sea Surface Salinity Strongly Weakens ENSO Spring Predictability Barrier. Geophysical Research Letters, 50, e2023GL106673.
8. Zhou, Q., W. Duan*, J. Hu, 2020: Exploring sensitive area in the tropical Indian Ocean for El Niño prediction: implication for targeted observation. Journal of Oceanology and Limnology, 38: 1602–1615.
9 Zhang, R-H,*, Y. Yu, Z. Song, H. Ren, Y. Tang, F. Qiao, et al., 2020: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. Journal of Oceanology and Limnology, 38(4): 930–961.
10. Hu, J., R.-H. Zhang*, C. Gao, 2019: A Hybrid Coupled Ocean–Atmosphere Model and Its Simulation of ENSO and Atmospheric Responses. Advances in Atmospheric Sciences, 36: 643–657.
11. Hu, J., W. Duan*, Q. Zhou, 2019: Season-dependent predictability and error growth dynamics for La Niña predictions. Climate Dynamics, 53: 1063–1076.
12. Hu, J., Duan W.*, 2016: Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. Journal of Geophysical Research: Oceans, 121: 2901-2917.