物理海洋学(气象学)

高冠东、男、副研究员、博士毕业于新南威尔士大学(全球TOP30),从事海洋动力过程及其环境效应研究,长期与国际顶尖科研机构保持合作,在Journal of Physical Oceanography, Geophysical Research Letters、Journal of Geophysical Research Oceans、Journal of Hydrology、Progress in Oceanography等TOP期刊共发表论文40余篇,第一及通讯作者文章15篇, 撰写英文专著独立章节一章,获得2024年度海洋工程科学技术奖(一等)。入选山东省博新人才计划(2018年山东省共10人入选)等,并主持了国家基金委自然科学面上、青年基金等9个项目。

一、研究领域

海洋极端气候事件、物理-生态耦合动力过程、海洋中小尺度动力过程、浪流耦合作用

二、招生专业及方向

招生专业:物理海洋学

招生方向:1.海洋波动与环境预测;2.海洋遥感与数值模拟、预测方法

三、研究室及联系方式

请写所在研究室全称,联系方式:邮箱、电话

海洋环流与波动重点实验室,guandonggao@qdio.ac.cn,13808996172

四、承担的主要科研项目

国家自然科学基金,“潮汐-地形-层化-季风协同作用下夏季鲁北沿岸流的动力机制研究”(项目编号:4257060203),2026.01-2029.12,主持

山东省自然科学基金创新发展联合基金项目子课题,“黄渤海近岸海域海洋热浪的发生机理及智能预报预警”(项目编号:4257060203),2026.01-2029.12, 主持

国家自然科学基金,“2016-2017年夏季南黄海及东海北部极端海洋热浪事件形成机理研究”(项目编号:42006004),2021.01-2023.12,主持

崂山实验室十四五重大项目子课题,“典型海洋生态灾害动力学模式与预测预报方法”(课题编号:2021QNLM040001-5),2021.12-2024.12,主持

国家重点研发计划子课题,“北斗精准导航与高分辨率遥感集成技术及区域综合应用示范”,(课题编号:2021YFB3901300),2022-11-21- 2025-11-30,主持

山东省自然科学基金,人类活动影响下胶州湾生态环境的变化及响应机制(项目编号ZR2019BD016),2019.07-2022.06,主持

中科院项目子课题,海洋溢油特征要素解析与防控方法研究:基于渤海沉潜油的实验、模拟与应急子课题(项目编号COMS2019J05),2020.01-2022.12,主持

国家自然科学基金重点支持项目子课题,东海-太平洋间沟弧盆体系对西边界流下层逆流形成及大洋-近海物质能量交换影响研究(项目编号92158202),2022.01-2025.12,主持

横向课题,渤海典型河口盐度锋面图件及相关资料服务(项目编号 Y921291),2021.1-2023.12 主持

五、研究成果及奖励

数值模拟及理论研究:

1)基于FVCOM模型的框架,申请人自主编写模型代码,构建了三维、双向耦合的海浪-潮流-环流-泥沙耦合模式,揭示了地形变化对潮汐不对称的影响机制,并首次全面定量分析了浪-流耦合作用对物质输运的影响,其中单篇论文引用超过120次[Gao et al., 2018a, JPO; Gao et al., 2018b, ECSS; Gao et al., 2014, ECSS]。

2)基于自主构建的高分辨率动力模式,阐明了黄海及其邻近海域极端升温事件的具体和遥相关动力驱动机制,为极端海洋灾害事件的预测提供了理论基础[Gao et al., 2020, JGR-Oceans; Gao et al., 2025, JSR]。该工作近年内被Science、Nature Communication等顶级期刊论文引用超过100次。

3)构建了近海高精度动力-生态耦合模式,首次使用非线性扰动算法对三维复杂生态模式进行全域生态参数优化,消除人为调整带来的不确定性;揭示了复杂地形海域跨陆架输运及上升流的动力机制及其生态效应[Gao et al., 2022, JGR-Oceans]。

4)基于近海高分辨率物理-生态耦合模式,揭示了在强降雨事件导致的营养盐脉冲式输入情境下,海洋动力过程对营养物质输运的控制机制,从而为极端天气事件的生态环境管理提供理论支撑[Han, Gao*, et al., 2023, JH , TOP期刊,IF=6.7;Xiao, Gao*, et al., 2024, STOTEN, TOP期刊,IF=9.8]。

5)基于近海高分辨率动力模式,精准模拟澳大利亚Cockburn海湾的三维精细化温度结构,揭示了海湾周期性层化的物理机制,丰富了近海上层混合的理论认知[Xiao, Gao* et al., 2022, RMSA;Song, Gao* et al., 2021, ECSS; Wu, Gao* et al., 2022]。

六、代表性论文及著作

[1] Gao, G., Feng, M. (2025). Physical mechanisms behind the interhemispheric teleconnection between South Pacific Meridional Mode and Bohai, Yellow and East China Seas during boreal summers of 2001–2019. Journal of Sea Research, 207,102621.

[2] Wang, Y., Wang, Q, Gao, G.*, et al. (2025). Physical mechanisms behind the interhemispheric teleconnection between South Pacific Meridional Mode and Bohai, Yellow and East China Seas during boreal summers of 2001–2019. Journal of Sea Research, 207,102621.

[3] Gao, G., Yang, D., Xu, L., Zhang, K., Feng, X., & Yin, B. (2022). A biological-parameter-optimized modeling study of physical drivers controlling seasonal chlorophyll blooms off the southern coast of Java Island. Journal of Geophysical Research: Oceans, 127, e2022JC018835. https://doi.org/10.1029/2022JC018835.

[4] Xiao, R., Gao, G.*, et al. (2024). The impact of extreme precipitation on physical and biogeochemical process regarding with nutrient dynamics in a semi-closed bay. Science of Total Environment, 906, 167599. https://doi.org/10.1016/j.scitotenv.2023.167599.

[5] Han, H., Xiao, R., Gao, G.*, Yin, B., Liang, S., & Lv, X. (2023). Influence of a heavy rainfall event on nutrients and phytoplankton dynamics in a well-mixed semi-enclosed bay. Journal of Hydrology,128932. https://doi.org/10.1016/j.jhydrol.2022.128932.

[6] Liao, F., Gao, G.*, Zhan, P., &Wang, Y. (2022). Seasonality and trend of the global upper-ocean vertical velocity over 1998–2017. Progress in Oceanography, 128932. https://doi.org/10.1016/j.jhydrol.2022.128932

[7] Wu, X., Xu, M., Gao, G.*, Yin, B., & Lv, X. (2022). Application of the Trigonometric Polynomial Interpolation for the Estimation of the Vertical Eddy Viscosity Coefcient Based on the Ekman Adjoint Assimilation Model. Journal of Marine Science and Engineering, 10, 1165. https://doi.org/10.3390/jmse10081165.

[8] Luo, C., Gao, G.*(2023). A Study of Wind Stress Effects on the Vertical Eddy Viscosity Coefcient Using the Ekman Model with Data Assimilation. J. Mar. Sci. Eng. 2023, 11, 1487. https:// doi.org/10.3390/jmse11081487

[9] Xiao, R., Gao, G.*, Feng, M., Greenwood, J., Kessing, J., Yin, B., Feng, X., Xu, L., Liu, Z., & Lv, X. (2022). Three-dimensional numerical simulation of circulation and vertical temperature structure during summer in Cockburn Sound. Regional studies in Marine Science,102187.

[10]   Song, D., Gao, G.*, Xia, Y., Ren, Z., & Yin, B. (2021). Near-inertial oscillations in seasonal highly stratified shallow water. Estuarine Coastal and Shelf Science, 8, 107445. https://doi.org/10.1016/j.ecss.2021.107445.

[11]   Gao, G., Marin, M., Feng, M., Yin, B., Yang, D., Feng, X., Ding, Y., & Song, D. (2020). Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016-2018. Journal of Geophysical Research: Oceans, 125, e2020JC016518. http://doi.org/10.1029/2020JC016518.

[12]   Gao, G., Wang, X., Song, D., Bao, X., Yin, B., Yang, D., & Ding, Y. (2018a). Effects of wave-current interactions on suspended-sediment dynamics during strong wave events in Jiaozhou Bay, Qingdao China. Journal of Physical Oceanography, 48, 1053-1078. http://doi: 10.1175/JPO-D-17-0259.1.

[13]   Gao, G.*, Wang, X., Bao, X., Song, D., Lin, X., & Qiao, L. (2018b). The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China. Estuarine, Coastal and Shelf Science, 206, 61-75. http://dx.doi.org/10.1016/j.ecss.2017.01.012.

[14]   Gao, G.*, Wang, X., & Bao, X. (2014). Land reclamation and its impact on tidal dynamics in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 2014, 151(5), 285-294.